Search results

Search for "atom transfer radical polymerization (ATRP)" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • : atom transfer radical polymerization (ATRP); glycopolymer; lectin; poly(ethylene glycol); poly(ε-caprolactone); ring-opening polymerization (ROP); Introduction Carbohydrate–protein interactions are involved in many biological processes, including cell recognition and cell–cell adhesion. These
  • functionality can influence the macromolecule bioactivity [8]. Controlled radical polymerization (CRP) techniques, such as atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer (RAFT) polymerization, single-electron transfer living radical polymerization (SET-LRP) and
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

  • Emilie Molina,
  • Mélody Mathonnat,
  • Jason Richard,
  • Patrick Lacroix-Desmazes,
  • Martin In,
  • Philippe Dieudonné,
  • Thomas Cacciaguerra,
  • Corine Gérardin and
  • Nathalie Marcotte

Beilstein J. Nanotechnol. 2019, 10, 144–156, doi:10.3762/bjnano.10.14

Graphical Abstract
  • transfer radical polymerization (ATRP) according to published procedures [29]. All reactions were carried out in the absence of air using standard Schlenk techniques and vacuum-line manipulation. All the chemicals used for the reaction (tert-butyl acrylate 98%, α-methoxy-ω-hydroxy-poly(ethylene oxide) with
  • obtained. The variations of the mesostructures and the chemical composition of the corresponding hybrid materials as a function of pH are reported and discussed. Experimental Materials Poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA, MPEO = 5000 g·mol−1, MPAA = 1420 g·mol−1) was synthesized by atom
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films

  • Laurence Ourry,
  • Delphine Toulemon,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2017, 8, 408–417, doi:10.3762/bjnano.8.43

Graphical Abstract
  • grafting processes, living-radical polymerization (e.g., atom-transfer radical polymerization (ATRP), reversible addition–fragmentation chain transfer (RAFT) or nitroxide-mediated polymerization (NMP)) makes it possible to establish robust polymer–particle bonds and then grow polymer brushes of controlled
PDF
Album
Full Research Paper
Published 09 Feb 2017

Improvement of the oxidation stability of cobalt nanoparticles

  • Celin Dobbrow and
  • Annette M. Schmidt

Beilstein J. Nanotechnol. 2012, 3, 75–81, doi:10.3762/bjnano.3.9

Graphical Abstract
  • during the thermolysis of Co2(CO)8 with carboxylic acid-telechelic polystyrene, which was obtained by atom transfer radical polymerization (ATRP) [14] (see Supporting Information File 1 for details). All synthetic steps involved were performed under argon in order to prevent premature oxidation. The
PDF
Album
Supp Info
Letter
Published 30 Jan 2012
Other Beilstein-Institut Open Science Activities